Выбор читателей
Популярные статьи
Удивительно, но если хвост ящерицы отпадет, то недостающая его часть вновь сформируется из оставшейся. В некоторых случаях репаративная регенерация настолько совершенна, что весь многоклеточный организм восстанавливается лишь из небольшого фрагмента ткани. Наше тело самопроизвольно теряет клетки с поверхности кожи и замещает их вновь образованными. Это происходит именно из-за регенерации.
Репаративная регенерация - это естественная способность всех живых организмов. Она применяется для замены изношенных частей, обновления поврежденных и утраченных фрагментов или воссоздания тела из небольшого участка в период постэмбриональной жизни организма. Регенерация - это процесс, который включает в себя рост, морфогенез и дифференцировку. Сегодня все типы и виды репаративной регенерации активно используются в медицине. Такой процесс встречается не только у людей, но и у животных. Регенерация делится на два типа:
Существует постоянная потеря многих структур нашего организма из-за износа и повреждений. Замена этих клеток обусловлена физиологической регенерацией. Примером такого процесса может служить обновление эритроцитов. Изношенные клетки кожи постоянно заменяются новыми.
Репаративная регенерация - это процесс восстановления утраченных или поврежденных органов и частей тела. В данном типе ткани образуются путем расширения прилегающих фрагментов.
Существуют различные типы репаративной регенерации. В нашей статье вы можете найти более подробную информацию о них. Регенерация эпиморфозного типа включает в себя дифференцировку взрослых структур с целью формирования недифференцированной массы клеток. Именно с этим процессом связано восстановление удаленного фрагмента. Примером эпиморфоза является регенерация конечностей у амфибий. В морфаллаксисном типе регенерация происходит в основном за счет перестановки уже существующих тканей и восстановления границ. Примером такого процесса является формирование гидры из небольшого фрагмента ее тела.
Восстановление происходит благодаря распространению соседних тканей, которые заполняют собой молодые клетки с дефектом. В дальнейшем из них формируются полноценные зрелые фрагменты. Такие формы репаративной регенерации называют восстановлением.
Существует два варианта такого процесса:
В современном медицинском мире, репаративная регенерация костной ткани - это реальность. Такая техника наиболее часто используется в операции по пересадке костного трансплантата. Стоит отметить, что собрать достаточное количество материала для такой процедуры невероятно трудно. К счастью, новый операционный метод восстановления поврежденных костей возник.
Благодаря биомимикрии исследователи разработали новый метод восстановления костной структуры. Главная его цель - это использование кораллов морских губок в качестве каркасов или рам для костной ткани. Благодаря этому поврежденные фрагменты смогут восстанавливать себя самостоятельно. Кораллы идеально подходят для такого рода операций, потому что они легко интегрируются в существующие кости. Совпадает и их структура с точки зрения пористости и состава.
Для того чтобы восстановить используя новый метод, хирурги должны подготовить коралловые или морские губки. Им также необходимо подобрать такие вещества, как стромальные или костного мозга, которые способны стать любым другим адамантобластом в организме. Репаративная регенерация тканей - это достаточно трудоемкий процесс. В ходе операции губки и клетки вставляются в секцию поврежденной кости.
Со временем костные фрагменты либо восстанавливаются, либо стволовые адамантобласты расширяют существующую ткань. Как только кость срастается, коралл или становятся ее частью. Это происходит благодаря их сходству по строению и составу. Репаративная регенерация и способы ее осуществления изучаются специалистами со всего мира. Именно благодаря этому процессу можно справиться с некоторыми приобретенными недостатками организма.
Способы репаративной регенерации играют важную роль в жизни любого живого организма. Переходный эпителий - это многослойный покров, который характерен для мочеотводящих органов, таких как мочевой пузырь и почки. Они наиболее подвержены растяжениям. Именно в них между клетками расположены плотные контакты, которые предотвращают проникновение жидкости через стенку органа. Адамантобласты мочеотводящих органов быстро изнашиваются и ослабевают. Репаративная регенерация эпителиев происходит за счет содержания в органах стволовых клеток. Именно они сохраняют способность к делению на протяжении всего жизненного цикла. Со временем процесс обновления значительно ухудшается. С этим связаны многочисленные заболевания, которые возникают у многих с возрастом.
Известно, что ожоги - это самая распространенная травма среди детей и взрослых. Сегодня тема такого травматизма необычайно популярна. Не секрет, что ожоговые повреждения могут не только оставить на теле рубец, но и стать причиной хирургического вмешательства. На сегодняшний день не существует такой процедуры, которая позволила бы полностью избавиться от полученного шрама. Это связано с тем, что механизмы репаративной регенерации изучены не до конца.
Различают три степени ожоговых повреждений. Известно, что более 4 миллионов человек страдают от повреждений кожи, которые появились после воздействия на нее пара, горячей воды или химического вещества. Стоит отметить, что рубцовая кожа не соответствует той, которую она заменяет. Отличается она и по своим функциям. Новообразованная ткань более слабая. Сегодня специалисты активно изучают механизмы репаративной регенерации. Они считают, что в скором времени смогут полностью избавить пациентов от ожоговых шрамов.
Репаративная регенерация костной ткани и ее уровень определяются степенью повреждений в области перелома. Чем больше микротрещин и травм, тем медленнее будет протекать образование костной мозоли. Именно по этой причине специалисты отдают предпочтение методам лечения, которые не связаны с нанесением дополнительных повреждений. Наиболее оптимальные условия для репаративной регенерации в костных фрагментах - это неподвижность обломков и замедленная дистракция. В случае их отсутствия на месте перелома образуются соединительные волокна, которые в дальнейшем формируют
Физическая и репаративная регенерация играет важную роль в нашей жизни. Не секрет, что у некоторых такой процесс может быть замедлен. С чем это связано? Это и многое другое вы можете выяснить в нашей статье.
Патологическая регенерация - это нарушение восстановительных процессов. Существует два вида такого восстановления - гиперрегенерация и гипорегенерация. Первый процесс образования новой ткани ускоренный, а второй замедленный. Два этих вида являются нарушением регенерации.
Первые признаки патологической регенерации - это образование долгое заживление травм. Такие процессы возникают как следствие нарушения местных условий.
В жизни каждого живого существа важную роль играет физиологическая и репаративная регенерация. Примеры такого процесса известны абсолютно каждому. Не секрет, что у некоторых пациентов достаточно долго заживают травмы. Любой живой организм должен иметь полноценный рацион, который включает в себя разнообразие витаминов, микроэлементов и полезных веществ. При недостатке питания возникает дефицит энергии, и нарушаются трофические процессы. Как правило, у пациентов развивается та или иная патология.
Для ускорения процесса регенерации необходимо в первую очередь удалить отмершие ткани и взять во внимание иные факторы, которые могут повлиять на восстановление. К ним можно отнести стрессы, инфекции, протезы, недостаток витаминов, и многое другое.
Для ускорения процесса регенерации специалист может назначить витаминный комплекс, анаболические средства и биогенные стимуляторы. В домашней медицине активно используется облепиховое масло, каротолин, а также соки, настойки и отвары лекарственных трав.
К репаративной регенерации относят полное или частичное восстановление поврежденных тканей и органов. Ускоряет ли такой процесс мумие? Что это такое?
Известно, что мумие используют уже на протяжении 3 тысяч лет. Это биологически активное вещество, которое вытекает из расщелин скал южных гор. Его месторождение встречается в более чем 10 странах мира. Мумие представляет собой клейкую массу темно-коричневого цвета. Вещество хорошо растворяется в воде. В зависимости от места сбора состав мумие может отличаться. Тем не менее абсолютно в каждом из них содержится витаминный комплекс, ряд минеральных веществ, эфирные масла и пчелиный яд. Все эти компоненты способствуют быстрому заживлению ран и травм. Они также улучшают реакцию организма на неблагоприятные условия. К сожалению, препарата на основе мумие для ускорения регенерации нет, поскольку вещество плохо поддается обработке.
Как мы говорили ранее, процесс регенерации происходит в абсолютно любом живом организме, в том числе и у животного. Стоит отметить, что чем выше оно организованно, тем хуже в его организме проходит восстановление. У животных репаративной регенерацией является процесс воспроизведения утерянных или поврежденных органов и тканей. Простейшие организмы восстанавливают свое тело только при наличии ядра. В случае если оно отсутствует, то утерянные части не воспроизводятся.
Существует мнение, что чижи могут восстанавливать свои конечности. Однако данная информация не подтверждена. Известно, что млекопитающие и птицы восстанавливают только ткани. Тем не менее процесс не изучен до конца.
Легче всего у животных восстанавливается нервная и мышечная ткань. В большинстве случаев новые фрагменты образуются за счет остатков старых. У амфибий было замечено значительное увеличение регенерирующих органов. Подобное встречается и у ящериц. Например, вместо одного хвоста вырастают два.
Проведя целый ряд исследований, ученые доказали, что если ящерице отрезать хвост наискось и задеть при этом не один, а два или более позвоночников, то у рептилии вырастет 2-3 хвоста. Встречаются также случаи, когда у животного может восстановиться орган не там, где он был расположен ранее. Удивительно, но путем регенерации может быть также воссоздан орган, которого не было раньше в теле того или иного существа. Такой процесс называется гетероморфозом. Все способы репаративной регенерации необычайно важны не только для млекопитающих, но и для птиц, насекомых, а также одноклеточных.
Каждому из нас известно, что ящерицы с легкостью могут полностью восстановить свой хвост. Далеко не все знают, почему это происходит. Физиологическая и репаративная регенерация играет важную роль в жизни каждого. Для ее восстановления можно использовать как лекарственные препараты, так и домашние методы. Одним из лучших средств считается мумие. Оно не только ускоряет процесс регенерации, но улучшает общий фон организма. Будьте здоровы!
Использование в медицине для стимуляции репаративных процессов. Сущность изобретения: применение в качестве препарата, обладающего способностью стимулировать репаративные процессы, дипептида L-Lys-L-Glu. Предлагается лекарственное средство, способное стимулировать регенерацию, содержащее фармацевтически приемлемый носитель и эффективное количество дипептида в качестве активного начала, представляющего собой соединение формулы L-лизил-L-глутаминовая кислота (L-Lys-L-Glu) или его химические модификации в виде солей и других производных. Лекарственное средство предлагается для парентерального, интраназального, перорального и местного применения. Согласно изобретению способ стимуляции регенерации включает профилактическое и/или лечебное введение субъекту, нуждающемуся в этом, лекарственного средства в дозах 0,01-100 мкг/кг массы тела по крайней мере один раз в день в течение периода, необходимого для достижения терапевтического эффекта. Технический результат: получено средство пептидной природы, обладающее способностью стимулировать репаративные процессы. 3 с. и 4 з.п.ф-лы, 4 ил., 5 табл.
Изобретение относится к фармакологии, а именно к лекарственным средствам, содержащим пептиды и композиции на их основе, которые могут найти профилактическое и/или лечебное применение в медицине в качестве стимуляторов регенерации тканей при гнойно-воспалительных заболеваниях и послеоперационных осложнениях, трофических нарушениях, заболеваниях и поражениях кожи и слизистых оболочек, последствиях воздействия радиационных, термических и химических факторов, сопровождающихся нарушением репаративных процессов. Изобретение касается применения дипептида L-лизил-L-глутаминовая кислота (L-Lys-L-Glu) в качестве средства, стимулирующего репаративные процессы у субъектов, нуждающихся в этом. Среди наиболее близких аналогов по применению известна группа препаратов, стимулирующих метаболические процессы: производные пиримидина (метилурацил, пентоксил) и биогенные препараты (актовегин, солкосерил) (1). Недостатком метилурацила является то, что при применении препарата возможны аллергические кожные реакции (уртикарная сыпь), иногда головная боль, головокружение. Пентоксил при приеме внутрь в связи с раздражающим действием может вызывать диспептические явления. Недостатком применения актовегина и солкосерила является малый выход из препарата активных веществ, большая продолжительность лечения, ограничения применения в зависимости от стадий раневого процесса и низкая эффективность при лечении гнойных ран. Эти препараты оказывают преимущественно стимулирующее действие на лейкопоэз. Известен дипептид L-Lys-L-Glu, используемый в качестве компонента для пептидного синтеза (2). Известно, что дипептид L-Lys-L-Glu обладает иммуномодулирующей активностью (3). Однако известная активность указанного дипептида характеризует только направленность его иммунобиологического действия, что не является очевидным и взаимосвязанным проявлением свойств дипептида стимулировать репаративные процессы, и не определяет конкретные показания для его клинического применения. Приведенные ниже примеры стимулирующего действия дипептида L-Lys-L-Glu на репаративные процессы объективно подтверждают отсутствие взаимосвязи между известным свойством и заявляемым. Заявляемое изобретение направлено на решение задачи получения средства пептидной природы, обладающего способностью стимулировать репаративные процессы. Задача решена путем применения в качестве средства, обладающего способностью стимулировать репаративные процессы, дипептида со следующей аминокислотной последовательностью: L-Lys-L-Glu. Дипептид получают классическим методом пептидного синтеза в растворе (4). Ранее неизвестное свойство дипептида L-Lys-L-Glu стимулировать репаративные процессы выявлено при его экспериментальном изучении. Согласно изобретению предлагается лекарственное средство, способное стимулировать регенерацию, которое содержит фармацевтически приемлемый носитель и эффективное количество дипептида в качестве активного начала, представляющего собой соединение формулы L-лизил-L-глутaминoвaя кислота (L-Lys-L- Glu) или его химические модификации (например, в виде солей и других производных). Понятие "лекарственное средство", используемое в данной заявке, подразумевает использование любой лекарственной формы, содержащей различные фармацевтические производные дипептида, которые обладают терапевтическим эффектом для лечения заболеваний, при которых необходима стимуляция регенерации тканей. Понятие "эффективное количество", используемое в данной заявке, подразумевает использование того количества активного начала, которое в соответствии с его количественными показателями активности и токсичности, а также на основании знаний специалиста должно быть эффективным в данной препаративной форме. Для получения фармацевтических композиций, отвечающих изобретению, предлагаемый дипептид или его фармацевтически приемлемые производные смешиваются как активный ингредиент с фармацевтическим носителем согласно принятым в фармацевтике способам компаундирования. Носитель может иметь различные формы, которые зависят от лекарственной формы препарата, желаемой для введения в организм, например, парентерального, интраназального, перорального или местного (например, в виде аппликаций, мази). При изготовлении композиций в предпочтительной дозированной форме для перорального или местного применения могут использоваться любые известные фармацевтические компоненты. Для парентерального (интраназального) введения носитель обычно включает стерильную воду, хотя могут быть включены другие ингредиенты, способствующие стабильности, или для сохранения стерильности. Согласно изобретению дипептид активен при введении его в дозах 0,01-100 мкг/кг массы тела, хотя могут быть использованы и более низкие (высокие) дозы в зависимости от степени тяжести и характера течения заболевания. Заявляемое лекарственное средство предлагается для парентерального, интраназального, перорального и местного применения. Изобретение охватывает способ стимуляции процессов регенерации у человека или животного, нуждающихся в такой стимуляции, а также охватывает фармацевтические композиции для осуществления этого способа. Согласно изобретению способ стимуляции процессов регенерации путем введения лекарственного средства, содержащего в качестве активного начала дипептид формулы L-лизил-L-глутаминовая кислота (L-Lys-L- Glu) или его химические модификации в виде солей и других производных, проявляется в активации клеточного метаболизма и регулирующем влиянии на процессы пролиферации и дифференцировки клеток различных тканей. Способ включает профилактическое или лечебное введение субъекту, нуждающемуся в этом, заявляемого лекарственного средства в дозах 0,01 - 100 мкг/кг массы тела по крайней мере один раз в день в течение периода, необходимого для достижения терапевтического эффекта - 10-40 дней в зависимости от характера течения и тяжести заболевания. Изобретение охватывает профилактику и/или лечение заболеваний, при которых необходима стимуляция регенерации тканей: гнойно-воспалительные заболевания и послеоперационные осложнения, трофические нарушения, заболевания и поражения кожи и слизистых оболочек, последствия воздействия радиационных, термических и химических факторов, сопровождающиеся нарушением репаративных процессов. Изобретение иллюстрируется примером синтеза дипептида формулы L-лизил-L-глутаминовая кислота (L-Lys-L-Glu) (пример 1), примерами испытания токсичности и биологической активности дипептида (примеры 2, 3, 4, 5) и примерами результатов клинического применения дипептида, демонстрирующими его фармакологические свойства и подтверждающими возможность достижения лечебного эффекта (примеры 6, 7, 8). Пример 1. Синтез дипептида L-Lys-L-Glu. 1. N ,N - дибензилоксикарбониллизил - - бензилглутаминовая кислота [I]. 0,154 г (0,65 ммоль) - бензилглутаминовой кислоты суспензируют в 3 мл диметилформамида, при перемешивании добавляют 0,091 мл (0,65 ммоль) триэтиламина, затем 0,300 г (0,59 ммоль) N-оксисукцинимидного эфира N ,N - дибензилоксикарбониллизина. Реакционную смесь перемешивают 12 часов при комнатной температуре. После этого растворитель упаривают в вакууме при 40 o C, к остатку добавляют 10 мл 1н H 2 SO 4 и дважды экстрагируют продукт этилацетатом (30х2). Органический слой промывают 1н H 2 SO 4 , водой до нейтральной реакции, сушат над Na 2 SO 4 . Отгонку растворителя проводят в вакууме при 40 o C, остаток растворяют в 1-2 мл этилацетата и высаживают продукт гексаном. Затем перекристаллизируют в системе этилацетат/гексан. Продукт отфильтровывают и сушат в вакууме над P 2 O 5 . Выход 0,330 г (88%). Коэффициент удерживания R f = 0,81 (бензол: ацетон 1:1, силуфол). 2. L-Лизил-L-Глутаминовая кислота. Защищенный дипептид [I] 0,330 г растворяют в 10 мг метанола, добавляют 3 мл воды и гидрируют над палладием на угле. Контроль по тонкослойной хроматографии. По окончании гидрирования катализатор отфильтровывают, остаток растворяют в минимальном количестве воды и высаживают метанолом. Продукт отфильтровывают, промывают этанолом, сушат в вакууме над P 2 O 5 . Выход 0,110 г (85%). Т пл. 194 - 196 o C. 2 0 = + 20,0 o (с = 3,0; H 2 O). R f = 0,54 (ацетонитрил: вода 1:3, "Merk"). Электрофорез: E Gly = 1,96; E His = 0,98 (1400 Вт, 45 мин, 2% уксусная кислота, "Watmann ЗММ". Пример 2. Изучение токсичности дипептида L-Lys-L-Glu. Изучение общетоксического действия дипептида L-Lys-L-Glu проводилось в соответствии с "Правилами доклинической оценки безопасности фармакологических средств (GLP)", утвержденными Приказом Министерства медицинской промышленности СССР от 17.05.91 N 154 и введенными в действие с 1 января 1992 г. Цель изучения состояла в определении переносимых токсических доз препарата, оценке степени и характера патологических изменений в различных органах и системах организма и выявлении зависимости токсических эффектов от дозы и длительности применения препарата. Определение острой токсичности дипептида L-Lys-L-Glu проводили по методу Кербера. Исследование проведено на 66 белых беспородных мышах-самцах массой 20-23 г, содержавшихся на стандартном режиме и получавших стандартное питание в условиях вивария. Животные были разделены случайным распределением на 6 равных групп по 11 мышей в каждой. Препарат вводили животным однократно внутримышечно в объеме 0,25 мл в дозах 1 мг/кг, 2 мг/кг, 3 мг/кг, 4 мг/кг, 5 мг/кг (в несколько тысяч раз превышающих терапевтическую дозу, рекомендуемую для клинического изучения). Животным контрольной группы в том же объеме вводился физиологический раствор. В течение 72 часов и далее через 14 суток ни в одной группе животных гибели мышей не обнаружено. Не отмечено каких-либо изменений общего состояния, поведения, двигательной активности, волосяного и кожного покрова, физиологических отправлений животных. Таким образом, дипептид L-Lys-L-Glu в дозах, превышающих терапевтическую, рекомендуемую для клинических испытаний, в несколько тысяч раз, не вызывает острых токсических реакций, что указывает на большую терапевтическую широту препарата. Исследование подострой токсичности дипептида L-Lys-L-Glu проведено на 60 белых беспородных крысах массой 150-250 мг. Ежедневно однократно животным опытных групп вводили препарат внутримышечно в течение 90 дней в дозах 1 мкг/кг, 0,3 мг/кг, 3 мг/кг в 0,5 мл физиологического раствора. Животным контрольной группы вводили в том же объеме физиологический раствор. На протяжении всего периода исследования животные находились под ежедневным наблюдением. Отмечали поведение животных, потребление корма и воды, состояние волосяного покрова и слизистых оболочек. Проводили еженедельное взвешивание животных. До введения препарата, на 30, 60 и 90 сутки после начала введения препарата у животных исследовали морфологический состав и свойства периферической крови. При завершении эксперимента исследовали биохимические и коагулологические показатели крови. Хроническую токсичность дипептида L-Lys-L-Glu, полученного заявляемым способом, изучали при длительном введении его крысам массой 150-250 мг. Животным ежедневно вводили внутримышечно препарат в дозах 1 мкг/кг, 0,1 мг/кг, 1 мг/кг в 0,5 мл физиологического раствора в течение 6 месяцев. Отмечали поведение животных, потребление корма и воды, состояние волосяного покрова и слизистых оболочек. Взвешивание животных проводилось ежедневно в первые 3 месяца эксперимента, затем 1 раз в месяц. Через 3 месяца после начала введения и при завершении эксперимента проводили гематологические и биохимические исследования. Оценивали функции сердечно-сосудистой системы, печени, поджелудочной железы, почек и надпочечников. После окончания введения препарата часть животных подвергали патоморфологическому исследованию с целью оценки состояния различных отделов головного и спинного мозга, сердца, аорты, легких, печени, почек, органов эндокринной и иммунной систем. При оценке общего состояния животных, морфологических и биохимических показателей периферической крови, морфологического состояния внутренних органов, состояния сердечно-сосудистой и дыхательной систем, функции печени и почек патологические изменения в организме не обнаружены. Изучение подострой и хронической токсичности дипептида L-Lys-L-Glu свидетельствует об отсутствии побочных эффектов при длительном применении препарата в дозах, превышающих терапевтическую в 100-1000 раз. Пример 3. Влияние дипептида L-Lys-L-Glu на заживление гнойных резано-размозженных ран мягких тканей Эффективность дипептида L-Lys-L-Glu оценивали на модели гнойной резано-размозженной раны мягких тканей бедра у 18 кроликов породы "Шиншилла" обоего пола массой тела от 2 до 3 кг. С этой целью у кроликов выбривали шерсть в области мягких тканей бедра и проводили разрез длиной 5 см и глубиной 2 см. Мягкие ткани (мышцы, подкожную клетчатку) раздавливали зажимом Кохера, инфицировали смесью возбудителя: Staphylococcus aureus, штамм 186. На кожу накладывали швы. Через 72 часа непрорезавшиеся швы снимали, проводили обработку ран 3%-ным раствором перекиси водорода. Животным подопытной группы вводили ежедневно однократно внутримышечно дипептид L-Lys-L-Glu в дозе 1 мкг на инъекцию в течение 5 сут. Кроликам контрольной группы по аналогичной схеме вводили физиологический раствор. В процессе лечения проводили обработку ран с применением наружных антисептических средств. При оценке эффективности дипептида L-Lys-L-Glu учитывали динамику регресса воспалительного процесса, сроки отторжения струпа и очищения ран от гнойно-некротических масс, появления грануляционной ткани в ране и начала краевой эпителизации. С целью определения объективных критериев течения раневого процесса на 6, 14, 21, 28 и 40 сутки анализировали показатели, отражающие полуколичественные характеристики отдельных клеточных элементов и структур образующейся грануляционной ткани, а также активность тканевых ферментов (5, 6, 7). В результате исследования установлено, что во всех группах в первой фазе воспаления на 6 сутки в тканях отмечаются обширные некрозы, окруженные узким ободком грануляционной ткани с диффузно расположенными молодыми фибробластами и единичными гистиоцитами. В фазе пролиферации мелкие очаги некроза были окружены широким слоем грануляционной ткани, в которой было много сосудов и лимфоидных клеток. Число гистиоцитов нарастало, а макрофаги образовывали скопления в некротических зонах. Фибробласты вытянуты, с тонкими ядрами. Особенно выражены процессы активизации клеточных элементов были у животных подопытной группы (табл. 1 (табл. 1-5 см. в конце описания). В фазе рубцевания у этих животных отмечались очаги некроза, окруженные слоем грануляционной ткани со зрелыми фибробластами. Между фибробластами была прослойка коллагеновых волокон. В межуточном веществе вблизи зон некроза были сосредоточены преколлагеновые волокна, фибробласты, гистиоциты, что указывало на процесс рассасывания и замещения некротизированных тканей молодой грануляционной тканью. Отличительной чертой реакции тканей на применение дипептида L-Lys-L-Glu являлась высокая активность кислой фосфатазы в гистиоцитах в фазу пролиферации (14 - 28 сутки). В незначительных очагах лейкоцитарной инфильтрации, а также в эндотелии сосудов наблюдалась высокая активность щелочной фосфатазы. В фазе рубцевания стабилизировалось на высоком уровне содержание кислой фосфазы в гистиоцитах, а щелочной фосфатазы - в лейкоцитах и сосудах (табл. 2). Наблюдаемые изменения свидетельствуют об активизации процессов клеточного метаболизма в тканях, способствующей более быстрому очищению раневой поверхности от некротизированных тканей и эпителизации раны (табл. 3). Пример 4. Влияние дипептида L-Lys-L-Glu на компенсаторную регенерацию печени после частичной гепатэктомии Исследование проведено на 26 белых беспородных крысах-самцах массой 150-200 г. Животные были разделены на 3 группы: 1 группа - здоровые животные, 2 группа-контроль (крысы, которым была произведена частичная гепатэктомия с удалением 2/3 печени), 3 группа - прооперированные животные, которым затем вводили подкожно через 2 и 24 часа после операции по 0,1 мл дипептида L-Lys-L-Glu (по 0,1 мкг на крысу). В эти же сроки животным 1-й и 2-й групп вводили физиологический раствор в том же объеме. Удаленную во время операции печень фиксировали в формалине. Прооперированные крысы были умерщвлены эфиром через 32 и 96 часов после операции. В это же время забивали и крыс контрольной группы. Печень крыс фиксировали в формалине. После окраски препаратов гематоксилин-эозином определяли митотический индекс в клетках печени, а также количество полиплоидных клеток, находящихся в S-фазе клеточного цикла (количество делящихся клеток). Изучение митотической активности клеток регенерирующей печени через 32 часа после частичной гепатэктомии показало, что число митозов и клеток в S-фазе клеточного цикла становится в два раза больше, чем в печени здоровых животных. Эти отличия недостоверны в случае введения физиологического раствора, тогда как после инъекций дипептида L-Lys-L-Glu увеличение количества митозов, клеток, синтезирующих ДНК, и общей суммы делящихся клеток становится достоверным (табл. 4). При изучении препаратов печени через 96 часов после гепатэктомии оказалось, что и у крыс, получавших физиологический раствор, и у крыс, получавших дипептид L-Lys-L-Glu, наблюдается значительное усиление митотической активности гепатоцитов. При сравнении данных подопытной (третьей) и контрольной (второй) групп выяснилось, что у крыс, которым вводили дипептид L-Lys-L-Glu, наблюдается количество митозов, в два раза большее, чем у крыс, получавших физиологический раствор. Количество клеток, находящихся в S-фазе митотического цикла, у крыс подопытной группы не отличалось достоверно от количества гепатоцитов в S-фазе в контрольной группе, хотя в целом количество делящихся клеток через 96 часов после гепатэктомии в регенерирующей печени крыс с введением дипептида L-Lys-L-Glu было на 75% больше, чем у крыс после введения физиологического раствора (табл. 4). Таким образом, установлено, что при введении крысам дипептида L-Lys-L-Glu через 96 часов после частичной гепатэктомии наблюдается усиление митотической активности гепатоцитов, свидетельствующей об ускорении репаративных процессов в печени. Пример 5. Влияние дипептида L-Lys-L-Glu на регенерацию слизистой оболочки кишечника после радиационного повреждения. Работа выполнена на 24 самцах белых крыс линии Вистар в возрасте 2-х месяцев, имеющих массу тела 90-100 г. Исследования проведены на трех группах животных: 1 группа - здоровые животные, 2 группа - контроль (облученные животные), 3 группа - введение дипептида L-Lys-L-Glu облученным животным. Общее однократное гамма-облучение животных в дозе 6 Гр, вызывающее "синдром кишечной гибели", выполнено на кобальтовом аппарате ГУБ 20000 при мощности дозы 200 рад/мин. Дипептид L-Lys- L-Glu вводили через 24 часа после облучения по 0.5 мкг в объеме 0,5 мл физиологического раствора внутрибрюшинно в течение 5 дней. Животные 1-й и 2-й групп получали физиологический раствор по той же схеме. Изучение действия дипептида L-Lys-L-Glu у облученных животных выполнено на проксимальном отделе двенадцатиперстной кишки. Забой животных проведен под нембуталовым наркозом (50 мг/кг) на 8 сутки после облучения (начало периода репаративной регенерации). Кусочки кишки фиксировали в течение 24 ч по Карновскому для электронной микроскопии. Ультраструктурные исследования проводили в электронном микроскопе JEM-100S (JEOL, Япония) на ультратонких срезах, приготовленных на ультрамикротоме LKB-7A (LKB, Швеция), контрастированных уранилацетатом и цитратом свинца. Тучные клетки селективно окрашивали 1%-ным раствором толуидинового синего (Fluka) в 0,5 М HCl при pH 0,5 (8, 9). Для изучения пролиферативной активности клеток использовали мышиные моноклональные антитела к пролиферирующему клеточному ядерному антигену (proliferating cell nuclear antigen - PCNA) при разведении 1:50 (клон PC 10, Calbiochem, США) и авидин-биотин-пероксидазный набор для выявления мышиных иммуноглобулинов (Vectastain, США). Серотонин-позитивные клетки выявляли с помощью поликлональных кроличьих антител к серотонину (Ready-to-Use) и стрептавидин-биотин-пероксидазного набора (BioGenex, США). Для выявления металлотионеин-позитивных клеток (MTL-позитивных клеток) применяли кроличьи антитела к металлотионеинам (1:2000). Иммуногистохимическое выявление антигенов на гистологических срезах выполнено согласно основным требованиям для иммунопероксидазных методов (10, 11). Количественные исследования выполнены с помощью системы компьютерного анализа микроскопических иображений IMSTAR (Imstar, Франция) с применением прикладных компьютерных лицензионных программ Morphostar-2 и Colquant-2, согласно основным принципам стереологии в морфометрии (12, 13). Для каждого животного подсчет соответствующих структур проводили в 10 визуальных полях зрения по трем срезам исследуемого органа. Митотический индекс (I mit) и индекс пролиферирующей способности (I pcna) клеток в двенадцатиперстной кишке определяли в 10-15 стандартных сечениях крипт с общим содержанием не менее 1000 ядер энтероцитов. Тестовая площадь для определения серотонин-позитивных клеток и тучных клеток составляла не менее 3 мм 2 . MTL-позитивные клетки подсчитывали в 100 криптах кишки. При действии ионизирующего излучения на 8 сутки отмечается частичное, в ряде случаев почти полное восстановление ультраструктуры энтероцитов, однако продолжают встречаться гиперплазированные ("раздутые") митохондрии, отек эндоплазматического ретикулума, очаговая вакуолизация цитоплазмы. При этом эндокринные клетки выглядят к этому сроку практически неизмененными. Количественные изменения в двенадцатиперстной кишке выживших на 8 сутки после общего гамма-облучения в дозе 6 Гр имеют следующие особенности: I pcna в криптах кишечника возрастает до 46,5%, а митотический индекс - до 4,2% (табл. 5). Эти данные свидетельствуют, что восстановление эпителиального слоя слизистой у выживших животных протекает очень быстро, а пул стволовых клеток кишечного эпителия в этот период находится на стадии гиперрегенерации (фиг. 1а). Гистологическое изучение препаратов, окрашенных гематоксилином и эозином, также указывает на то, что архитектоника эпителиальной выстилки начинает нормализоваться. Однако результаты компьютерного анализа показывают, что численная плотность энтерохромаффинных клеток (фиг. 2а) и MTL-позитивных клеток (фиг. 3а) еще не достигает уровня показателей у здоровых животных. Содержание тучных клеток в собственной пластинке слизистой у облученных животных снижено почти в 10 раз (фиг. 4а), что свидетельствует о крайне высокой радиочувствительности мукозного типа тучных клеток к действию ионизирующего излучения и очень медленном восстановлении их количества даже при воздействии сублетальных доз. При введении дипептида L-Lys-L-Glu следует отметить выраженную активизацию структур эндоплазматического ретикулума и пластинчатого комплекса в эндокринных клетках кишечника, что может свидетельствовать о его стимулирующем влиянии на процессы синтеза и секреции гормонов. Согласно результатам морфометрического анализа, в криптах кишечника облученных животных после инъекций дипептида L-Lys-L-Glu отмечается существенная активизация восстановительных процессов (фиг. 1б). Индекс PCNA достигает 49,8%, а митотический индекс увеличивается до 4,7% (табл. 5). Количественная плотность энтерохромаффинных клеток практически достигает уровня значений у здоровых животных. Прослеживается тенденция к увеличению числа и интенсивности иммуноокрашивания MTL-позитивных клеток в основании крипт (фиг. 3б). Применение дипептида L-Lys-L-Glu усиливает пролиферативный потенциал стволовых клеток кишечника и способствует морфофункциональной регенерации слизистой оболочки кишечника после общего однократного гамма-облучения в дозе 6 Гр. Таким образом, в результате экспериментального изучения установлено, что дипептид L-Lys-L-Glu не обладает токсичностью, активизирует метаболические процессы и пролиферативную активность клеток различных тканей, способствуя их регенерации. Выявленные в результате экспериментального доклинического исследования свойства дипептида L-Lys-L-Glu позволяют считать показанным его профилактическое и/или лечебное применение в качестве стимулятора регенерации тканей при гнойно-воспалительных заболеваниях и послеоперационных осложнениях, трофических нарушениях, заболеваниях и поражениях кожи и слизистых оболочек, последствиях воздействия радиационных, термических и химических факторов, сопровождающихся нарушением репаративных процессов. Приведенные ниже примеры результатов клинического изучения заявляемого дипептида демонстрируют его фармакологические свойства и подтверждают возможность осуществления изобретения. Пример 6. Эффективность применения дипептида L-Lys-L-Glu при воспалительных заболеваниях слюнных желез и слюнокаменной болезни. Под наблюдением находилось 45 пациентов. С воспалительными заболеваниями слюнных желез - 27 человек, из них у 4 была поражена околоушная железа. Со слюнокаменной болезнью подчелюстной слюнной железы - 18 человек. Средний возраст больных - 35-40 лет. Всем больным со слюнокаменноой болезнью проведено удаление камней. Тридцати больным (15 с воспалением слюнных желез и 15 со слюнокаменной болезнью) вводили дипептид L-Lys-L-Glu внутримышечно ежедневно по 1 мкг в течение 5 суток. Больные контрольной группы получали традиционное лечение: антибактериальное, десенсибилизирующая терапия, повязки с иод-димексидом, физиолечение (УВЧ, электрофорез с йодистым калием - 5-10% на область железы), местное лечение (промывание железы раствором антисептиков с антибиотиками). У больных со слюнокаменной болезнью, леченных дипептидом L-Lys-L-Glu, прекращалось гнойное отделяемое из протоков железы, в послеоперационном периоде рана в полости рта заживала первичным натяжением, без осложнений. Отек и инфильтрация мягких тканей, слизистой оболочки полости рта рассасывались на 3-4 день после операции. Железа значительно уменьшалась в размерах и прекращались боли. У больных с воспалением слюнных желез, леченных дипептидом L-Lys-L-Glu, на 4-5 день после лечения прекращались боли в железе и гнойное отделяемое из протока железы, увеличивалось слюноотделение, рассасывались отек и инфильтрация мягких тканей, при пальпации железа значительно уменьшалась в размере и становилась безболезненной. Улучшалось общее самочувствие пациентов. Наблюдалась нормализация лабораторных показателей. Таким образом, применение дипептида L-Lys-L-Glu способствовало уменьшению воспалительных явлений, более быстрой регенерации ран, сокращению сроков лечения. Пример 7. Эффективность применения дипептида L-Lys-L-Glu при гнойно-воспалительных заболеваниях различной локализации. Дипептид L-Lys-L-Glu применяли в комплексном лечении 15 больных с поверхностными вялогранулирующими ранами верхних и нижних конечностей и 19 больных с флегмонами челюстно-лицевой области. Препарат вводили внутримышечно ежедневно по 1 мкг в течение 10 суток. Эффективность лечения оценивали в динамике по изменению активности раневых ферментов и сроков заживления ран. Установлено, что применение дипептида L-Lys-L-Glu было наиболее эффективно у больных с низкой активностью раневых протеолитических энзимов в первой и второй фазе раневого процесса, некротическим типом цитограмм и замедленным процессом заживления ран. Дипептид L-Lys-L-Glu повышал активность раневых ферментов в первую фазу раневого процесса, что вызывало адаптационную перестройку в ране и приводило к усилению синтеза кислой фосфатазы в гистиоцитах, щелочной фосфатазы в лейкоцитах и цитохрома C в макрофагах, способствующих усилению репаративных процессов. Введение дипептида способствовало ускорению сроков очищения ран от некротических тканей и заживлению ран за счет активации макрофагов, фибробластов и лейкоцитов в очаге воспаления. В результате лечения дипептидом L-Lys-L-Glu отмечались более быстрая ликвидация местного воспалительного процесса, улучшение общего состояния больных и сокращение сроков лечения. Пример 8. Эффективность применения дипептида L-Lys-L-Glu при осложненном течении послеоперационного периода у онкологических больных. Дипептид L-Lys-L-Glu применяли в комплексном лечении 9 больных с вялогранулирующими послеоперационными ранами после операционных вмешательств по поводу рака легкого II-III стадий и рака желудка II-III стадий. Больным в период предоперационной подготовки проводили лучевую терапию по радикальной программе с использованием крупных полей сложной конфигурации на линейном ускорителе электронов с энергией 4,3 МэВ и гамма-терапевтическом аппарате "Рокус-М" в тормозном режиме. В отдельных случаях в качестве компонента комбинированного лечения назначали химиотерапию. Дипептид L-Lys-L-Glu вводили, начиная с 3 суток после операции внутримышечно ежедневно по 1 мкг в течение 10 суток. Установлено, что применение препарата способствовало уменьшению отека и боли в области раны, ускорению сроков очищения ран от некротических тканей и формирования послеоперационного рубца. На фоне лечения у больных отмечались нормализация температуры, улучшение аппетита и более быстрое восстановление массы тела. Таким образом, применение дипептида L-Lys-L-Glu в комплексном лечении онкологических больных стимулирует репаративные процессы в тканях, вызывает улучшение общего состояния больных и сокращение сроков лечения. Клиническое применение дипептида L-лизил-L-глутaминoвaя кислота (L-Lys-L-Glu) подтвердило данные экспериментального исследования о том, что препарат эффективен при заболеваниях и состояниях, сопровождающихся нарушением репаративных процессов. Источники информации 1. Машковский М.Д. Лекарственные средства. В двух частях. - М.: Медицина, 1993. - 4.2.-С. 161-191 2. SERVA - Catalog. - Heidelberg, 1987/88. - РЕ I - РЕ 40. 3. Патент РФ N 2080120. Средство, обладающее иммуномодулирующей активностью. БИ N 15.27.05.97. 4. Якубке Х.-Д., Ешкайт X. Аминокислоты, пептиды, белки: Пер. с нем. -М. : Мир, 1985. -456 с. 5. Балин В.Н., Мадай Д.Ю., Цвигайло Д.А. Местное лечение гнойных хирургических заболеваний кожи и подкожной клетчатки в условиях регулируемой активности раневых энзимов. - СПб., 1996. - 37 с. 6. Колодин В.И., Кузнецов O.K. Количественное цитохимическое выявление ферментов в культурах клеток после заражения вирусом Рауса // Вопросы онкологии. - 1975. - Т. 21, N 9. -С. 65-71. 7. Берстон М. Гистохимия ферментов. - М.: Мир, 1965. - 464 с. 8. Enerback L. , Miller H.R.P., Mayrhofer G. Methods for the identification and characterization of mast cells by light microscopy // Mast cell differentiation and heterogeneity / Eds. A.D.Befus et al.- Raven Press, New York, 1986.- P. 405-416. 9. Stead R.H., Dixon M.F., Bramwell N.H. et al. Mast cells are closely apposed to nerves in the human gastrointestinal mucosa // Gastroenterology. -1987. -Vol. 87.-P. 575-585. 10. Полак Дж. , Ван Норден С. Введение в иммуноцитохимию: современные методы и проблемы: Пер. с англ.- М.: Мир, 1987. -74 с. 11. Кветной И. М. , Южаков В.В. Окрашивание ткани эндокринных желез и элементов АПУД-системы // Микроскопическая техника: Руководство / Ред.: Д.С. Саркисов, Ю.Л.Перов.- М.: Медицина, 1996. -С. 375 - 418. 12. Автандилов Г.Г. Медицинская морфометрия. Руководство. М.: Медицина, 1990. -384 с. 13. Weibel E. R. , Kistler G.S., Scherle W.F. Practical stereological methods for morphometric cytology// J. Cell Biol. -1966. -Vol. 30. -P. 23-38.
Формула изобретения
1. Применение дипептида L-Lys-L-Glu в качестве средства, стимулирующего репаративные процессы. 2. Лекарственное средство для профилактики и/или лечения заболеваний, при которых необходима стимуляция репаративных процессов, содержащее активное начало и фармацевтически приемлемый носитель, отличающееся тем, что в качестве активного начала содержит эффективное количество дипептида L-Lys-L-Glu или его химические модификации в виде солей. 3. Средство по п.2, где оно представлено в виде лекарственной формы для парентерального введения. 4. Средство по п.2, где оно представлено в виде лекарственной формы для интраназального введения. 5. Средство по п.2, где оно представлено в виде лекарственной формы для перорального введения. 6. Средство по п.2, где оно представлено в виде лекарственной формы для местного введения. 7. Способ профилактики и/или лечения нарушений репаративных процессов при гнойно-воспалительных заболеваниях и послеоперационных осложнениях, трофических нарушениях, заболеваниях и поражениях кожи и слизистых оболочек, последствиях воздействия радиационных, термических и химических факторов, заключающийся в парентеральном, интраназальном, пероральном или местном введении лекарственного средства по п.2 в дозе 0,01 - 100 мкг/кг массы тела по крайней мере один раз в день в течение периода, необходимого для достижения терапевтического эффекта.
«Любой ткани организма без исключения свойственна способность к репаративной регенерации в той или иной форме. И если рассматривать процесс в его не далеко зашедших стадиях, то при оптимизации условий, на определённом для каждой ткани уровне возможна и полная репаративная регенерация — реституция».
профессор, доктор биологических наук Л.Д.Лиознер
В публикации на сайте «АЛЛАТРА НАУКА» под названием: меня очень впечатлила информация о практических научных результатах в области вертебрологии, в частности о возможности регенерации повреждённых межпозвонковых дисков вплоть до полного восстановления (полной реституции), благодаря развитию метода вертеброревитологии . Эта информация явилась для меня отправной точной к исследованию данного вопроса.
В переводе на русский язык вертеброревитология означает «наука, дающая вторую жизнь (возвращающая здоровье) позвоночнику». Вертеброревитология включает в себя несколько запатентованных методов, направленных на лечение дегенеративно-дистрофических заболеваний позвоночника, а также послеоперационных рецидивов экструзии пульпозного ядра (грыжи диска). На сегодняшний день вертеброревитология является первым и единственным реальным шагом в вертебрологии (науке о позвоночнике), направленным на этиотропное лечение остеохондроза и его осложнений, о чём свидетельствуют, в первую очередь, объективные (как ближние, так и отдалённые) результаты лечения, подтверждённые снимками МРТ.
Репаративная, или восстановительная регенерация - это восстановление клеток и тканей взамен погибших из-за различных патологических процессов. Она чрезвычайно разнообразна по факторам, вызывающим повреждения, по объемам повреждения, а также по способам восста-
Рис. 126. Регенерация комплекса органов у гидры (А); кольчатого червя (Б); морской звезды (В)
новления. Повреждающими факторами, например, могут быть механическая травма, оперативное вмешательство, действие ядовитых веществ, ожоги, обморожения, лучевые воздействия, голодание и другие болезнетворные агенты. Наиболее широко изучена репаративная регенерация после механической травмы. Способность некоторых животных (гидра, планария, некоторые кольчатые черви, морские звезды, асцидия и др.) восстанавливать утраченные органы и части организма издавна изумляла ученых. Ещё Ч.Дарвин удивлялся способности улитки воспроизводить голову и способности саламандры восстанавливать отрезанные глаза, хвост и конечности.
Известны примеры восстановления больших участков организма (рис. 126), состоящих из комплекса органов (регенерация ротового конца у гидры, головного конца у кольчатого червя, восстановление морской звезды из одного луча).
Репаративная регенерация может быть полной и неполной. Полная регенерация, или реституция, характеризуется возмещением дефекта тканью, которая идентична погибшей. Она развивается преимущественно в тканях, где преобладает клеточная регенерация. При неполной регенерации, или субституции, дефект замещается соединительной тканью, рубцом. Субституция характерна для органов и тканей, в которых преобладает внутриклеточная форма регенерации, либо она сочетается с клеточной регенерацией. Функция органа возмещается в таких случаях путем гипертрофии или гиперплазии окружающих дефект клеток.
Рис. 127. Схема гиперрегенерации
Рис. 128. Схема гипорегенерации
Патологическая регенерация - это извращение регенерационного процесса, нарушение смены фаз пролиферации и дифференцировки. Патологическая регенерация (рис. 127, 128) проявляется в избыточном или недостаточном образовании регенерирующей ткани (гипер- или гипорегенерация). Примерами ее могут служить образование келоидных рубцов, избыточная регенерация периферических нервов (травматические невромы), избыточное образование костной мозоли при срастании перелома, вялое заживление ран (хронические трофические язвы голени в результате венозного застоя) и др.
Механизмы репаративной и физиологической регенерации едины: репаративная регенерация – это, по сути, усиленная физиологическая регенерация. Однако из-за влияния патологических процессов репаративная регенерация имеет некоторые качественные морфологические отличия от физиологической.
Существует несколько способов (разновидностей) репаративной регенерации. К ним относят эпиморфоз, морфаллаксис, регенерационную и компенсаторную гипертрофию. Гипертрофию и гиперплазию клеток органов и тканей, а также возникновение и рост опухолей относят к гипербиотическим процессам - процессам избыточного роста и размножения клеток, тканей и органов.
Гипертрофия - увеличение размеров органа или ткани за счет увеличения размера каждой клетки. Выделяют рабочую (компенсаторную), викарную (заместительную) и гормональную (коррелятивную) гипертрофии.
Самым частым видом гипертрофии является рабочая гипертрофия, которая встречается как в нормальных физиологических условиях, так и при некоторых патологических состояниях. Причиной ее является усиленная нагрузка, предъявляемая к органу или ткани. Примером рабочей гипертрофии в физиологических условиях может служить гипертрофия скелетной мускулатуры и сердца у спортсменов, а также лиц, занятых тяжелым физическим трудом. Рабочая гипертрофия наблюдается в тканях, состоящих из стабильных, неделящихся клеток, в которых адаптация к повышенной нагрузке не может быть реализована путем увеличения количества клеток.
Викарная, или заместительная гипертрофия развивается в парных органах (почки) или при удалении части органа, например, в печени, в легких. Примером физиологической гормональной (коррелятивной) гипертрофии может служить гипертрофия матки при беременности.
Развивающаяся в органе гипертрофия, несомненно, имеет положительное значение, поскольку позволяет сохранить функцию органа в резко изменившихся условиях (заболевание, утрата части органа и т.п.). Этот период называется стадией компенсации. В дальнейшем, когда в органе возникают дистрофические изменения, происходит ослабление функции, и в конечном счете, когда адаптационные механизмы исчерпаны, наступает декомпенсация органа.
Исходя из частей органа (клеток), вовлечённых в процесс гипертрофии, её подразделяют на истинную и ложную. Истинная гипертрофия - увеличение объема ткани или органа и повышение их функциональной способности вследствие разрастания основных (ответственных за функцию) клеток, а также других элементов. Примером являются гипертрофия гладких мышц матки у беременных животных, а также гипертрофия сердца при физической работе. Ложная гипертрофия - увеличение объема органа при разрастании соединительной или жировой ткани. Количество основных клеток при этом остается без изменений или даже уменьшается, а функциональная способность органа снижается (например, гипертрофия молочной железы за счет жировой ткани).
У животных различают два основных способа регенерации: эпиморфоз и морфаллаксис.
Эпиморфоз заключается в отрастании нового органа от ампутационной поверхности. При эпиморфической регенерации утраченная часть тела восстанавливается за счет активности недифференцированных клеток, похожих на эмбриональные. Они накапливаются под пораненным эпидермисом у поверхности разреза, где образуют зачаток, или бластему (рис. 129). Клетки бластемы постепенно размножаются и превращаются в ткани нового органа или части тела. Регенерация путем образования бластемы широко распространена у беспозвоночных, а также играет важную роль в регенерации органов амфибий.
Существует две теории происхождения бластемных клеток: 1) клетки бластемы происходят из «резервных клеток», т.е. клеток, оставшихся неиспользованными в процессе эмбрионального развития и распределившихся по разным органам тела; 2) ткани, целостность которых была нарушена в области разреза (травмы), «дедифференцируются» (утрачивают специализацию) и превращаются в отдельные бластемные клетки. Таким образом, согласно теории «резервных клеток», бластема образуется из клеток, остававшихся эмбриональными, которые мигрируют из разных участков тела и скапливаются у поверхности разреза, а согласно теории «дедифференцированной ткани», бластемные клетки происходят из клеток поврежденных тканей.
Морфаллаксис - это регенерация путем перестройки регенерирующего участка. При морфаллаксисе другие ткани тела или органа преобразуются в структуры недостающей части. У гидроидных полипов регенерация происходит главным образом путем морфаллаксиса, а у планарий в ней одновременно имеют место как эпиморфоз, так и морфаллаксис.
Рис. 129. Регенерация конечностей путём эпиморфоза у личинки амфибий.
А – схема операции; Б – регенерирует только иннервированная (правая) культя (1), левая культя рассасывается; В – после ампутации; Г – затягивание раны эпидермисом (2) и распад тканей (3) под ним за счёт дедифференцировки; Д – редифференцировка в бластеме (4); Е – дальнейшее развитие регенерата
Репаративная регенерация может быть типичной (Гомоморфоз) и атипичной (гетероморфоз). При гомоморфози восстанавливается такой же орган, как и потерян. При гетероморфози восстановлены органы отличаются от типовых. При этом восстановление утраченных органов может проходить путем епимор- фозу, морфалаксису, ендоморфозу (или регенерационной гипертрофией), компенсаторной гипертрофией.
Епиморфоз (от греч. ??? — после и????? — форма) — Это восстановление органа путем отрастания от раневой поверхности, подлежащей при этом чувственной перестройке. Ткани, прилегающих к поврежденному участки, рассасываются, происходит интенсивный деление клеток, дающих начало зачатке регенерата (бластемы). Затем происходит дифференцировка клеток и формирования органа или ткани. За типом епиморфозу проходит регенерация конечностей, хвоста, жабр в аксолотля, трубчатые кости от надкостницы после вылущивание диафиза у кроликов, крыс, мышцы от мышечной культи у млекопитающих и др.. К епиморфозу относится и рубцевания, при котором происходит закрытие ран, но без восстановления утраченного органа. Епиморфозна регенерация не всегда дает точную копию удаленной структуры. Такую регенерацию называют атипичной. Отличают несколько разновидностей атипичной регенерации.
Гипоморфоз (от греч. ??? — под, внизу и????? — форма) — регенерация с частичным замещением ампутированной структуры (у взрослого шпорцевых лягушки возникает остеподибна структура вместо конечности). Гетероморфоз (от греч. ?????? — другой, другой) — Появление другой структуры на месте утраченной (появление конечности на месте антенн или глаза у членистоногих).
Морфалаксис (от греч. ????? — форма, вид, ?????, ?? — обмен, смена) — это регенерация, при которой происходит реорганизация тканей с участка, оставшаяся после повреждения, почти без клеточного размножение путем перестройки. Из части тела путем перестройки образуется целая животное или орган меньших размеров. Затем размеры особи, что образовалась, или органа увеличиваются. Морфалаксис наблюдается в основном в низкоорганизованных животных, в то время как епиморфоз — в более високоорганизованых. Морфалаксис является основой регенерации гидр. гидроидных полипов, планарий. Часто морфалаксис и епиморфоз происходят одновременно, в сочетании.
Регенерация, что происходит внутри органа, называется ендоморфозом, или регенерационной гипертрофией. При этом восстанавливается не форма, а масса органа. Например, при краевом ранении печени отделенная часть органа никогда не восстанавливается. Поврежденная поверхность восстанавливается, а внутри другой части усиливается размножение клеток и в течение нескольких недель после удаления 2 / 3 печени восстанавливается исходная масса и объем, но не форма. Внутренняя структура печени оказывается нормальной, ее частички имеют типичный размер и функция органа восстанавливается. Близкой к регенерационной гипертрофии является компенсаторная гипертрофия, или викарная (заместительная). Этот средство регенерации связан с увеличением массы органа или ткани, вызванный активным физиологическим нагрузкам. Увеличение органа происходит за счет деления клеток и их гипертрофии.
Гипертрофия клеток заключается в росте, увеличении числа и размеров органелл. В связи с увеличением структурных компонентов клетки повышается ее жизнедеятельность и работоспособность. При компенса- полуторной гипертрофии отсутствует поврежденная поверхность.
Наблюдается этот вид гипертрофии при удалении одного из парных органов. Так, при удалении одной из почек другая испытывает повышенной нагрузки и увеличивается в размере. Компенсаторная гипертрофия миокарда часто возникает у больных гипертонической болезни (при сужении периферических кровеносных сосудов), при пороках клапанов. У мужчин при разрастании предстательной железы затрудняется выделение мочи и гипертрофируется стенка мочевого пузыря.
Регенерация происходит во многих внутренних органах после различных воспалительных процессов инфекционного происхождения, а также после эндогенных нарушений (нейроэндокринные расстройства, опухолевый рост, действие токсических веществ). Репаративная регенерация в различных тканях проходит по-разному. В коже, слизистых оболочках, соединительной ткани после повреждение происходит интенсивное размножение клеток и восстановление ткани, подобной утраченной. Такую регенерацию называют полной, или pecmu- туцийною. В случае неполного восстановления, при котором замещение происходит другой тканью или структурой, говорят о субституции.
Регенерация органов происходит не только после удаление их части хирургическим путем или в наследствии травмирования (механического, термического и др.), но и после переноса патологических состояний. Например, на месте глубоких ожогов могут быть массивные разрастание плотной соединительной рубцовой ткани, но нормальная структура кожи не восстанавливается. После перелома кости в отсутствие смещения отломков нормальное строение не восстанавливается, а разрастается хрящевая ткань и образуется ненастоящий сустав. При повреждении покровов восстанавливается как соединительнотканная часть, так и эпителий. Однако скорость размножены клеток рыхлой соединительной ткани является более высокой, поэтому эти клетки заполняют дефект, образуют венные волокна и после больших повреждений формируется рубцовая ткань. Чтобы не допустить этого, применяют пересадку кожи, взятой у той же или другого человека.
В настоящее время для регенерации внутренних органов применяют искусственные пористые каркасы, по которым растут ткани, регенерируют. Ткани прорастают через поры и целостность органа восстанавливается. Регенерацией за каркасом можно восстановить кровеносные сосуды, мочеточник, мочевой пузырь, пищевод, трахею и другие органы.
Стимуляция регенерационных процессов. При обычных условий эксперимента у млекопитающих ряд органов не регенерируется (головной и спинной мозг) или восстановительные процессы в них выражены слабо (кости свода черепа, сосуды, конечности). Однако существуют методы воздействия, которые позволяют в эксперименте (а иногда и в клинике) стимулировать регенерационные процессы и применительно отдельных органов добиться полноценного восстановление. К таким воздействиям относится замещения удаленных участков органов гомо-и гетеротранс- плантатом, который способствует заместительной регенерации. Сущность заместительной регенерации заключается в замещении или прорастании трансплантатов регенерационными тканями хозяина. Кроме того, трансплантат является каркасом, благодаря которому направлена??регенерация стенки органа.
Для инициирования стимуляции регенерационных процессов исследователи используют также ряд веществ разнообразной природы — экстракты из животных и растительных тканей, витамины, гормоны щитовидной железы, гипофиза, надпочечников и лекарственные препараты.
Статьи по теме: | |
Моды от протанки 0.9 19.01. Скачать протанки модпак расширенная версия для wot. Прицелы от протанки
А также эксклюзивные решения. К примеру, вы сможете выбрать MOD «Как у... Кузнечик насекомое или животное
Это значит, что личинки после появления имеют внешнее сходство с... Читать книгу «Клан» онлайн полностью — Константин Муравьёв — MyBook
Чтобы добраться до врага, не всегда нужно идти напролом. Иногда, хоть ты... |